Modeling of Backdraft Phenomena

Zhixin Hu¹, Jennifer Wiley¹ & Arnaud Trouvé^{1,2}

¹Department of Fire Protection Engineering University of Maryland, College Park, MD 20742

²Building and Fire Research Laboratory NIST, Gaithersburg, MD 20899

Backdraft

- Basic scenario:
 - ➤ Phase II: Ignition followed by a deflagration and fireball event

Fire Dynamics Simulator (FDS)

- Advanced CFD solver oriented towards fire applications; developed by NIST, USA (http://fire.nist.gov/fds)
- Main features:
 - Large eddy simulation (LES) approach for turbulence
 - Low Mach number formulation
 - Numerical methods: finite difference scheme (2nd order); predictorcorrector time integrator (2nd order); rectangular Cartesian grid; multiblock grid.
 - Software engineering: public domain; open source (Fortran 90); PC-friendly (Windows/Linux/Unix OS) and parallel (MPI-based).
- Current combustion modeling capability: non-premixed combustion
- Objective: adapt FDS to treat ignition and partially-premixed combustion events (flash fires, fireballs, mixed modes)
 - ➤ Initial developments in FDS v4; current developments in FDS v5

Diffusion Flame Modeling

Model expressions for the LES-filtered HRR [W/m³]:

$$\underbrace{(\overline{\dot{q}'''}_{d})_{eq}}_{eq} = \underbrace{\frac{\overline{\rho}Y_{F}^{\infty}}{(1-Z_{st})} \times (\frac{V_{t}}{Sc_{t}}) |\nabla \widetilde{Z}|^{2} \times \delta(\widetilde{Z}-Z_{st}) \times \Delta H_{F}}_{-\overline{\dot{\omega}'''_{F}}} (FDS \text{ v4})$$
(FDS v4)
(Flame Surface)

$$(\overline{\dot{q}'''_d})_{eq} = \overline{\rho} \times \frac{\min(\widetilde{Y}_F; \widetilde{Y}_{O_2} / r_s)}{\tau} \times \Delta H_F$$
 (FDS v5) (Eddy Break-Up)

Diffusion Flame Modeling

- Flame extinction due to air vitiation
 - Flammability diagram (for diffusion flames) in terms of the oxidizer stream properties

• Flammable conditions:

$$\frac{Y_{O_2}^{\infty}}{Y_{O_2,c}} - (\frac{T_c - T_{O_2}^{\infty}}{T_c - T_a}) \ge 0$$

Diffusion Flame Modeling

- Modified expression with flame extinction capability:
 - ➤ Equilibrium chemistry model expression corrected by a flame extinction factor *FEF*

$$|\overline{\dot{q}_{d}'''}| = [1 - FEF] \times (\overline{\dot{q}_{d}'''})_{eq} = [1 - H((\frac{T_c - T_{O_2}^{\infty}}{T_c - T_a}) - \frac{Y_{O_2}^{\infty}}{Y_{O_2,c}})] \times (\overline{\dot{q}_{d}'''})_{eq}$$
Heaviside function

Deflagration Modeling

• Transport equation for the LES-filtered progress variable: (Boger *et al.*, *Proc. Combust. Inst.* 1998; Boger & Veynante, 2000)

$$\frac{\partial}{\partial t} (\overline{\rho} \widetilde{c}) + \frac{\partial}{\partial x_{j}} (\overline{\rho} \widetilde{c} \widetilde{u}_{j}) = \frac{\partial}{\partial x_{j}} ((\frac{\rho_{u} s_{L} \Delta_{c}}{16\sqrt{6/\pi}} + \overline{\rho} \frac{v_{T}}{Sc_{F}}) \frac{\partial \widetilde{c}}{\partial x_{j}}) + \rho_{u} s_{L} \times \Xi \times 4\sqrt{\frac{6}{\pi}} \frac{\widetilde{c}(1-\widetilde{c})}{\Delta_{c}} + \overline{\dot{\omega}_{ign}}^{"'}$$

Deflagration Modeling

• Corresponding expression for the HRR [W/m³]:

$$\overline{\dot{q}_{p}^{""}} = (\rho_{u} s_{L} \times \Xi \times 4 \sqrt{\frac{6}{\pi}} \frac{\tilde{c}(1 - \tilde{c})}{\Delta_{c}} + \underbrace{\overline{\dot{\omega}_{ign}^{""}}}_{\text{ignition}}) \times (Y_{F}^{u} - Y_{F}^{b}) \Delta H_{F}$$
propagation

- Adaptation of the filtered reaction progress variable approach to treat deflagrations in non-homogeneous fuel-air mixtures
- Coupling of the deflagration and diffusion burning capabilities to treat partially-premixed combustion events

The variations in fuel-air mixture composition are described using the LES-filtered mixture fraction \tilde{Z} :

$$\frac{\partial}{\partial t} (\overline{\rho} \widetilde{c}) + \frac{\partial}{\partial x_{j}} (\overline{\rho} \widetilde{c} \widetilde{u}_{j}) = \frac{\partial}{\partial x_{j}} ((\frac{\rho_{u} S_{L}(\widetilde{Z}) \Delta_{c}}{16\sqrt{6}/\pi} + \overline{\rho} \frac{v_{T}}{Sc_{F}}) \frac{\partial \widetilde{c}}{\partial x_{j}}) + \rho_{u} S_{L}(\widetilde{Z}) \times \Xi \times 4\sqrt{\frac{6}{\pi}} \frac{\widetilde{c}(1-\widetilde{c})}{\Delta_{c}} + \overline{\dot{\omega}_{ign}'''}$$

- The variations of laminar flame speed with mixture strength are described using a presumed polynomial function:
 - \triangleright Input parameters (fuel properties): Z_{LFL} , Z_{UFL} , Z_{st} , $S_{L,st}$

- Modified expression for the HRR [W/m³]:
 - ➤ Non-homogeneous premixed combustion:

$$\frac{\overline{\dot{q}_{p}^{"''}}}{\overline{\dot{q}_{p}^{"''}}} = \underbrace{(\rho_{u}(s_{L}(\tilde{Z})) \times \Xi \times 4\sqrt{\frac{6}{\pi}} \frac{\tilde{c}(1-\tilde{c})}{\Delta_{c}}) \times (Y_{F}^{m}(\tilde{Z}) - (Y_{F}^{eq}(\tilde{Z})) \times \Delta H_{F}}_{\tilde{\omega}_{c}^{"''}}$$

• Two-variable description of the reactive mixture composition (state relationships):

Pure mixing Equilibrium

- Basic expressions for the HRR [W/m³]:
 - > Premixed combustion:

$$\overline{\dot{q}_{p}^{"''}} = (\rho_{u} s_{L}(\widetilde{Z}) \times \Xi \times 4\sqrt{\frac{6}{\pi}} \frac{\widetilde{c}(1-\widetilde{c})}{\Delta_{c}}) \times (Y_{F}^{m}(\widetilde{Z}) - Y_{F}^{eq}(\widetilde{Z})) \times \Delta H_{F}$$

Non-premixed combustion:

$$\left| \overline{\dot{q}_{d}^{""}} = \left[1 - H\left(\left(\frac{T_c - T_{O_2}^{\infty}}{T_c - T_a} \right) - \frac{Y_{O_2}^{\infty}}{Y_{O_2, c}} \right) \right] \times \left(\overline{\dot{q}_{d}^{""}} \right)_{eq} \right|$$

- Identification of premixed and non-premixed combustion modes (Domingo, Vervisch & Bray, Combust. Theory Modelling 2002)
 - > Flame index:

$$FI = \frac{1}{2} \left(\frac{\nabla \widetilde{Y}_F. \nabla \widetilde{Y}_{O_2}}{\left| \nabla \widetilde{Y}_F \right| \times \left| \nabla \widetilde{Y}_{O_2} \right|} + 1 \right)$$

 \triangleright Premixed flamelets: FI = 1;

Diffusion flamelets: FI = 0

- New expression for the HRR (Domingo, Vervisch & Bray, Combust. Theory Modelling 2002)
 - Partially-premixed combustion:

$$\overline{\dot{q}'''} = FI \times \overline{\dot{q}'''_p} + (1 - FI) \times f_{ign} \times \overline{\dot{q}'''_d}$$

where f_{ign} is an ad hoc ignition factor

$$f_{ign} = (\frac{1}{2} + \frac{1}{2} \tanh(\frac{\tilde{c} - 0.6}{0.05}))$$

Formulated so that the diffusion flame model is initially turned off and is activated as a postpremixed flame event

Numerical Challenges

- Grid resolution requirement of the partially-premixed combustion model formulation
 - Premixed flame must remain smooth on the computational grid

Numerical Challenges: Laminar Flame Test

• Simplified conditions: one-dimensional plane configuration, initially quiescent gas, homogeneous fuel-air mixture

Numerical Challenges: Laminar Flame Test

 Effect of the LES filter-to-grid length scale ratio on the stability and accuracy of the predicted flame speed

Numerical Challenges

- Grid resolution requirement of the partially-premixed combustion model formulation
 - Premixed flame must remain thin in mixture fraction space

Numerical Challenges: Laminar Flame Test

• Simplified conditions: one-dimensional plane configuration, initially quiescent gas, non-homogeneous fuel-air mixture

Numerical Challenges: Laminar Flame Test

• Time variations of global HRR (premixed/diffusion components) $(L_Z/\Delta_c) = 10$

to non-premixed combustion

• Model problem: ignition of a fuel vapor cloud in a sealed

compartment (FDS v4)

Uniform mesh $(160 \times 160 \times 120) = 3,072,000$ $(\Delta x \Delta y \Delta z)^{1/3} = 2.5$ cm

Fuel: heptane $m_F \approx 1.2 \text{ kg}$ $E_F \approx 55 \text{ MJ}$

Time variations of global HRR (premixed/diffusion flames)

- Location and structure of premixed and non-premixed flames at t = 2.5 s
 - ➤ Initiation of partially-premixed combustion

- Location and structure of premixed and non-premixed flames at t = 3 s
 - Partially-premixed combustion

- Location and structure of premixed and non-premixed flames at t = 3.5 s
 - Partially-premixed combustion

- Location and structure of premixed and non-premixed flames at t = 8 s
 - ➤ Depletion of flammable fuel (due to combustion and pre-mixing) and transition to diffusion burning (attached to the fuel source)

Time variations of global HRR (premixed/diffusion flames)

- Location and structure of non-premixed flame at t = 60 and 80 s
 - > Flame extinction due to oxygen starvation

• Reduced-scale backdraft experiment (C. M. Fleischmann, 1994) (FDS v5)

- Uniform mesh $(96\times48\times48) = 221,184$ $(\Delta x \Delta y \Delta z)^{1/3} = 2.5 \text{ cm}$
- Fuel: methane
- Controlled ignition location spark ignitor

burner

Time variations of global HRR (premixed/diffusion flames)

• Phase 2: conditions at time of hatch opening

• Phase 2: ignition at time t = 3.7 s after hatch opening (Experiment: ignition delay is 6.7 s)

Phase 2: flame propagation across compartment (duration ~ 3.8 s)

time t = 5.5 s after hatch opening

time t = 7.5 s after hatch opening

• Phase 2: diffusion flame at the vent (duration ~ 40s)

time t = 31 s after hatch opening

time t = 40 s after hatch opening (extinction due to fuel depletion)

Modified Formulation for FDS v5

- One-step combustion model
 - \triangleright New FDS variables Z_1, Z_3

$$\begin{vmatrix} \frac{\partial}{\partial t} (\overline{\rho} \widetilde{Z}_{1}) + \frac{\partial}{\partial x_{i}} (\overline{\rho} \widetilde{u}_{i} \widetilde{Z}_{1}) = \frac{\partial}{\partial x_{i}} (\overline{\rho} D_{t} \frac{\partial \widetilde{Z}_{1}}{\partial x_{i}}) - \frac{\overline{\dot{\omega}_{R1}'''}}{Y_{C_{n}H_{m},F}} \\ \frac{\partial}{\partial t} (\overline{\rho} \widetilde{Z}_{3}) + \frac{\partial}{\partial x_{i}} (\overline{\rho} \widetilde{u}_{i} \widetilde{Z}_{3}) = \frac{\partial}{\partial x_{i}} (\overline{\rho} D_{t} \frac{\partial \widetilde{Z}_{3}}{\partial x_{i}}) + \frac{\overline{\dot{\omega}_{R1}'''}}{Y_{C_{n}H_{m},F}} \end{aligned}$$

Partially-premixed combustion expression of reaction rate

$$\overline{\dot{\omega}_{R1}'''} = FI \times \overline{\dot{\omega}_{R1,p}'''} + (1 - FI) \times f_{ign} \times \overline{\dot{\omega}_{R1,d}'''}$$

Modified Formulation for FDS v5

- One-step combustion model
 - Deflagration model

$$\frac{\partial}{\partial t}(\overline{\rho}\widetilde{c}) + \frac{\partial}{\partial x_{i}}(\overline{\rho}\widetilde{u}_{i}\widetilde{c}) = \frac{\partial}{\partial x_{i}}(\overline{\rho}D_{t}\frac{\partial\widetilde{c}}{\partial x_{i}}) + \frac{\partial}{\partial x_{i}}(\frac{\rho_{u}s_{L}^{*}\Delta_{c}}{16\sqrt{6/\pi}}\frac{\partial\widetilde{c}}{\partial x_{i}}) + \rho_{u}s_{L}^{*}\times(4\sqrt{\frac{6}{\pi}})\frac{\widetilde{c}(1-\widetilde{c})}{\Delta_{c}} + \overline{\dot{\omega}_{ign}^{"''}}$$

$$\frac{\overline{\dot{\omega}_{R1,p}'''}}{\overline{\dot{\omega}_{c}'''}} = \overline{\dot{\omega}_{c}'''} \times \begin{cases} Y_{C_{n}H_{m},F} \widetilde{Z} &, \text{if } \widetilde{Z} \leq Z_{st} \\ Y_{C_{n}H_{m},F} \frac{(1-\widetilde{Z})Z_{st}}{(1-Z_{st})} &, \text{if } \widetilde{Z} \geq Z_{st} \end{cases}$$

$$\overline{\dot{\omega}_{c}'''} = \rho_{u} s_{L}^{***} \times (4\sqrt{\frac{6}{\pi}}) \frac{\widetilde{c}(1-\widetilde{c})}{\Delta_{c}} + \overline{\dot{\omega}_{ign}'''}$$

Modified Formulation for FDS v5

- One-step combustion model $(C_n H_m + (n + \frac{m}{4})O_2 \rightarrow nCO_2 + \frac{m}{2}H_2O)$
 - State relationships

$$\begin{split} \widetilde{Y}_{C_{n}H_{m}} &= Y_{C_{n}H_{m},F} \widetilde{Z} - Y_{C_{n}H_{m},F} \widetilde{Z}_{3} \\ \widetilde{Y}_{O_{2}} &= Y_{O_{2},A} (1 - \widetilde{Z}) - ((n + \frac{m}{4}) \frac{W_{O_{2}}}{W_{C_{n}H_{m}}}) Y_{C_{n}H_{m},F} \widetilde{Z}_{3} \\ \widetilde{Y}_{CO_{2}} &= Y_{C_{n}H_{m},F} (\frac{nW_{CO_{2}}}{W_{C_{n}H_{m}}}) \widetilde{Z}_{3} \\ \widetilde{Y}_{H_{2}O} &= (\frac{mW_{H_{2}O}}{2W_{C_{n}H_{m}}}) Y_{C_{n}H_{m},F} \widetilde{Z}_{3} \\ \widetilde{Z} &= \widetilde{Z}_{1} + \widetilde{Z}_{3} \end{split}$$

Conclusion

- A partially-premixed combustion (PPC) model has been implemented into FDS v5. The PPC formulation is based on:
 - A mixture fraction model (featuring a vitiated air flame extinction capability) to describe non-premixed combustion
 - > A reaction progress variable model to describe premixed combustion
 - ➤ A coupling interface based on the concept of a flame index
- The performance of the PPC model has been evaluated in a series of verification tests (*e.g.* laminar flame propagation in homogeneous/inhomogeneous fuel-air mixtures; transient ignition followed by a deflagration/diffusion-flame sequence inside a closed compartment)
- Current work: validation tests based on comparisons with experimental data (indoor backdraft events; large-scale outdoor LNG fires)